The Merkuriev–Suslin theorem for any semi-local ring
نویسندگان
چکیده
منابع مشابه
The Merkuriev-suslin Theorem for Any Semi-local Ring
We introduce here a method which uses étale neighborhoods to extend results from smooth semi-local rings to arbitrary semi-local rings A by passing to the henselization of a smooth presentation of A. The technique is used to show that étale cohomology of A agrees with Galois cohomology, the Merkuriev-Suslin theorem holds for A, and to describe torsion in K2(A). We introduce here a method which ...
متن کاملUpgrading the Local Ergodic Theorem for planar semi-dispersing billiards
The Local Ergodic Theorem (also known as the ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However, the proof of that theorem relies upon a delicate a...
متن کاملThe Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملUpgrading Local Ergodic Theorem for planar semi-dispersing billiards
Local Ergodic Theorem (also known as ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However the proof of that theorem relies upon a delicate assumption...
متن کاملthe local nilpotence theorem for 4-engel groups revisited
the proof of the local nilpotence theorem for 4-engel groups was completed by g. havas and m. vaughan-lee in 2005. the complete proof on the other hand is spread over several articles and the aim of this paper is to give a complete coherent linear version. in the process we are also able to make few simplifications and in particular we are able to merge two of the key steps into one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2006
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2005.10.020